Overlapping Self-affine Sets
نویسنده
چکیده
We study families of possibly overlapping self-affine sets. Our main example is a family that can be considered the self-affine version of Bernoulli convolutions and was studied, in the non-overlapping case, by F. Przytycki and M. Urbański [23]. We extend their results to the overlapping region and also consider some extensions and generalizations.
منابع مشابه
Overlapping Self-affine Sets of Kakeya Type
We compute the Minkowski dimension for a family of self-affine sets on R. Our result holds for every (rather than generic) set in the class. Moreover, we exhibit explicit open subsets of this class where we allow overlapping, and do not impose any conditions on the norms of the linear maps. The family under consideration was inspired by the theory of Kakeya sets.
متن کاملO ct 2 00 7 OVERLAPPING SELF - AFFINE SETS OF KAKEYA TYPE
We compute the Minkowski dimension for a family of self-affine sets on R. Our result holds for every (rather than generic) set in the class. Moreover, we exhibit explicit open subsets of this class where we allow overlapping, and do not impose any conditions on the norms of the linear maps. The family under consideration was inspired by the theory of Kakeya sets.
متن کاملSelf-Affine Sets with Positive Lebesgue Measure
Using techniques introduced by C. Güntürk, we prove that the attractors of a family of overlapping self-affine iterated function systems contain a neighbourhood of zero for all parameters in a certain range. This corresponds to giving conditions under which a single sequence may serve as a ‘simultaneous β-expansion’ of different numbers in different bases.
متن کاملOn Analytical Study of Self-Affine Maps
Self-affine maps were successfully used for edge detection, image segmentation, and contour extraction. They belong to the general category of patch-based methods. Particularly, each self-affine map is defined by one pair of patches in the image domain. By minimizing the difference between these patches, the optimal translation vector of the self-affine map is obtained. Almost all image process...
متن کاملContinuity of Subadditive Pressure for Self-affine Sets
A certain ‘pressure’ functional Φ(T1, . . . , TN ), defined as the limit of sums of singular value functions of products of linear mappings (T1, . . . , TN ), is central in analysing fractal dimensions of self-affine sets. We investigate the continuity of Φ with respect to the linear mappings (T1, . . . , TN ) which underlie the self-affine sets.
متن کامل